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I. Introduction
Proteins are the elementary building units for all

living creatures and are essential components for
information and energy processing in living systems.
The need to understand genome structure-function
correlations for this group of natural compounds has
emerged as a focus of intense recent investigations.1
Although advances in nuclear magnetic resonance
techniques continue to increase the upper limit to the
size of protein molecules that can be studied by this
method,2 the diffraction of X-rays, electrons, or
neutrons is the most widely used method for protein
structure investigations. To resolve atoms that are,
typically, 1.5-2 Å apart, these diffraction methods
require single crystals that are as large as several
tenths of a millimeter in all three dimensions and
have low defect contents and high compositional and
structural uniformity. Recent advances in protein
expression, characterization, and purification tech-
niques, as well as beam and detector technology and
in computational crystallography, have greatly ac-
celerated the rate at which protein structures can be
solved.3 However, the preparation of diffraction-
quality crystals has emerged as the bottleneck in the
route toward macromolecular crystal structure de-
terminations.4,5

Beyond protein single-crystal growth, progress in
various biochemical and biomedical research and
production tasks is impeded by lack of insight into
protein nucleation and growth mechanisms. For
instance, the slow dissolution rate of protein crystals
is used to achieve sustained release of medications,
such as insulin.6-10 Work on the crystallization of
other proteins that can be dispensed in a similar
manner (e.g., interferon-R and human growth hor-
mone) is currently underway. If the administered
dose consists of a few, larger, equidimensional crys-
tallites, steady medication release rates can be
maintained for longer periods than for doses com-
prised of many smaller crystallites. To achieve such
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size distributions, crystal nucleation times must be
short so that all crystals grow at the same decreasing
supersaturation.

Other biomedical applications include situations
where pathological conditions are related to the
formation of crystals or other ordered solid ag-

gregates in the human body. An often cited example
is the crystallization of hemoglobin C and the polym-
erization of hemoglobin S that cause, respectively, the
CC and sickle cell diseases.11-13 Crystallization of the
proteins in the eye retina underlies the pathology of
cataract formation.14

Aside from their obvious medical and biotechnical
significance, another, often unrecognized, application
of protein crystallization is its use as a model for
crystallization phenomena that occur in a variety of
systems.15 Thus, they are potentially useful to sci-
entists from a number of different disciplines. Ex-
amples include water freezing in clouds and oceans,16

solidification in the Earth’s interior,17 the pulling of
12 and 18 in. semiconductor boules,18 etc. Given the
resolution limits of modern surface characterization
techniques, proteins are particularly attractive for
studies of fundamental crystal growth mechanisms.
For example, the size of the protein molecules (a few
nanometers) and the typical time scales for growth
(a few seconds between sequential discrete growth
events) are within reach of the current advanced
experiment techniques. On the other hand, the mo-
lecular masses typical of most protein molecules still
leave thermal equilibration times relatively short.
Thus, conclusions drawn from studies of protein
model systems may still be meaningful for small
molecule crystallization. In this regard, proteins
could be a better model than, for instance, colloidal
crystals.19-21

The above factors led to the emergence of macro-
molecular crystallization as a distinct area of re-
search in the early 1980s. Since then, the field has
benefited from concepts and methods developed in
other research areas. For instance, the application
of direct light scattering and other methods used to
probe colloids led to quantitative measurements of
molecular interactions and crystal nucleation in
protein solutions (see refs 22-26 and references
therein). Fluid dynamics analyses were applied to
characterize the convective-diffusive supply fields in
the solutions from which the crystals grow. Explana-
tions of the differences between terrestrially grown
protein crystals and those grown in microgravity,27-29

have largely been based on such analyses. Interfero-
metric and scanning probe techniques, first used by
inorganic crystal growers30,31 and surface scientists,
provided insight into growth processes on a near-
molecular level.32-39 A variety of methods to establish
and maintain advantageous supersaturation, tem-
perature, and solution composition conditions have
helped to achieve reproducible improved perfection
of protein crystals.8,40,41

In this paper, we review recent results that explain
some morphological and kinetics phenomena that
occur during layer-wise growth of protein crystals.
The explanations are based on ideas arising from the
field of “nonlinear dynamics”. For the crystal growth
processes that are the main themes of this review,
“dynamics” refers to unsteady collective behavior and
bunching of molecular steps on growth surfaces.
These dynamics arise due to the interactions between
individual growth steps (crystal layer edges) moving
on the crystal-solution interface. “Kinetics”, on the
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other hand, refers to the forces responsible for
individual growth step motion and the underlying
mechanisms through which molecules are incorpo-
rated into potential growth sites at these steps. Such
a distinction is to a large extent limited since there
is a clear interdependence between step dynamics
and kinetics.

A significant fraction of the studies of protein
growth dynamics were performed using the protein
lysozyme, most often extracted from hen egg white.
This enzyme hydrolyzes polysaccharides in bacterial
cell walls42 and was one of the first proteins studied
by X-ray diffraction.43-45 It is still widely used in
studies of protein folding dynamics46 and is particu-
larly attractive for crystal growth research because
its thermophysical properties are well characterized
and because it was used in numerous prior studies
(for a review, see ref 25). Numerous recent crystal-
lization mechanism studies, see below, using a wide
range of other proteins have validated the results
obtained with this material and justified lysozyme
as a useful model system for growth studies, see
sections II and III below.

Quantitative and qualitative results drawn from
the small number of protein systems studied in detail
show that there is a strong correspondence between
the growth behavior and mechanisms of these protein
crystals with data and theories accumulated over
some 70 years of research into the crystallization of
inorganic small-molecule crystals. Thus, while for
some yet-to-be studied protein systems there may
indeed turn out to be significant fundamental depar-
tures from existing crystal growth theories, there is
no quantitative experimental evidence for this at this
time.

This review deliberately omits several areas of
recent research related to protein crystallization.
Protein molecular interactions in solutions have been
discussed in a series of papers (see refs 47 and 48).
Results on nucleation of protein crystals are sum-
marized in ref 26. For a general theoretical introduc-
tion to the problem, see refs 49 and 50. Two-
dimensional crystallization of proteins is referenced
in refs 51-53. For treatises on protein crystallization
techniques, see the available or forthcoming editions
of refs 54 and 55. A comprehensive list of references
on impurity effects is provided in ref 56 and on
precipitants and solubility in ref 57. Our discussion
will not consider the possibility of conformational
heterogeneity and flexibility of the protein molecular
structure,54,55 which may be important for the perfec-
tion and utility of certain protein crystals. The reason
for this is that current characterization techniques
lack the submolecular resolution needed for the in-
situ evaluation of conformational effects.

Section II begins with a discussion of the genera-
tion of new crystal growth layers. It is shown that if
the crystals approach the sizes needed for their
applications (typically >100 µm), growth layers are
generated at a few preferred locations. The layers
then spread to cover the entire face. This leads to
long trains of almost parallel steps that exhibit step
bunching and other unsteady behavior that results
in undesirable defects. Examples of possible crystal

defects produced by such unsteady growth behavior
are provided in section III. In section IV we show that
growth is unsteady and results in compositional and
structural nonuniformities. The causes of this un-
steadiness are discussed in terms of macroscopic
nonequilibrium thermodynamics concepts. The mi-
croscopic mechanisms of the instability are discussed
in section V, and possible means of controlling or
suppressing them are reviewed in section VI. In
section VII we discuss the role of impurities in
unsteady growth processes and, in particular, the
effects of enhanced impurity supply to the interface.
From here we develop, in section VIII, recommenda-
tions for variations in the transport conditions that
will provide growth conditions that will allow unde-
sirable unsteady growth behavior. Depending on the
protein in question, desirable conditions may require
the reduced-gravity environment of space or may
need a forced flow of the nutrient solution. Finally,
in section IX it is seen that step bunching can affect
step propagation velocities. Future research direc-
tions in this field are considered in section X.

II. Step Generation and Propagation
Crystals grow by ordered addition of growth units

to a nucleation center. This requires suitable sites
at which growth units can attach and conform to the
crystal structure. Ideally, these growth sites are
molecular configurations at the growth interface that
provide an incoming molecule with exactly one-half
of the neighbors of a molecule in the crystal bulk and
were called half-crystal positions or kinks.58-60 For
growth above the roughening transition temperature,
such half-crystal positions (or kink sites) are abun-
dant even at equilibrium.61 The frequency with which
molecules are incorporated into the crystal structure
depends only on the impingement frequency and the
attachment activation energy. For such rough sur-
faces, the crystal’s growth rate and shape are con-
trolled by the transport processes responsible for
delivering growth material to the interface or heat
away from the interface. Growth under these condi-
tions is referred to as normal growth. This is the
growth mode of most melt-grown crystals (for ex-
ample, bulk semiconductors and oxide crystals used
for microprocessors and optoelectronic device tech-
nologies; for further reading, see refs 62 and 63.

For crystal surfaces below the roughening transi-
tion temperature, the bond energy between two
molecules in the crystal (proportional to the enthalpy
of crystallization or to the surface energy) is higher
than the thermal energy of a molecule61 and the
crystal is faceted. At equilibrium, the kink or growth
sites can only be located at the edges of unfinished
crystal planes on the surface. Indeed, at room tem-
perature, thermal fluctuations have been suggested
to result in abundant half-crystal positions at the
unfinished layer edges. These are called growth steps
or just steps.64,70 For inorganic crystals, the emer-
gence of such growth steps is associated with 2D or
surface nucleation of new layers65-68 or dislocations
cropping out on the face.69-71 However, due to the
small sizes of inorganic molecules and the consider-
ably faster kinetics, direct evidence of many of the
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growth mechanisms have not been obtained prior to
the advances in protein crystallization reviewed
below.

A. Step (Growth Layer) Generation

1. Dislocations, 2D Nucleation, and Crystallites

Most protein crystals display well-defined facets,
and it has been confirmed at the microscopic level
that growth occurs via the spreading of layers from
growth step sources such as dislocations and 2D
nucleation. Ex-situ electron microscopy observations
have resolved individual growth steps on (101) and
(110) facets of tetragonal lysozyme.72 In-situ atomic
force microscopy73-75 has produced particularly in-
structive images of growth step generation at screw
dislocation outcrops, see Figure 1, and of 2D-
nucleation-induced islands, see Figure 2.

Most recent AFM observations on a larger number
of other proteins and viruses37,38,76-80 have reproduced
the whole body of growth morphology and kinetics
scenarios suggested for inorganic growth. These
include layer spreading from dislocations and 2D
nuclei, annihilation of growth steps coming from
different sources at the face, and impediment of step
propagation by foreign particles. When a foreign
particle or a newly formed crystallite lands on the
growing crystal surface, it may orient in register with
the underlying lattice. In this case, it serves as a
prolific source of new growth layers, see Figure 3,
until the height of the adjacent crystal surface rises
above it and engulfs it. Misaligned microcrystals and
particles may also be incorporated into the crystal.

Figure 2. 2D nucleation-induced islands on a (110) face
of tetragonal lysozyme. Island density increases with
supersaturation from a to d. (Adapted with permission from
ref 73).

Figure 3. Series of AFM images showing the landing of
microcrystal (indicated by arrows) on the surface of a (111)
face of a growing cubic crystal of satellite tobacco mosaic
virus. This microcrystal serves as a source of growth layers.
It grows in thickness significantly slower than the large
crystal, presumably due to the low probability of 2D
nucleation on its small top surface. This will eventually
result in engulfment. Such events provide the major source
of growth layers during the growth of these virus crystals.
(Adapted with permission from ref 79).

Figure 1. Spiral step source at outcrop of screw dislocation
on a (110) face of lysozyme. Sequence of atomic force
microscopy micrographs. (Adapted with permission from
ref 74).
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Either case can result in the creation of dislocation
bundles that operate as a strong source of growth
layers, Figure 4.

There has been only one report79 of normal growth
of a protein: apoferritin, the hollow shell of the iron-
transport protein ferritin,81 Figure 5a. In previous
quasielastic light scattering studies, it was found that
apoferritin has a low surface energy. Despite the low
surface energy, its rough surface morphology seems
incompatible with the good faceting typically ob-
served with both apoferritin and ferritin crystals.82

This contradiction was resolved by recent studies that
reveal that this protein grows by layer generation
(exclusively by 2D nucleation) and spreading, Figure
5b.83 Thus, earlier observations may be attributed to
a high content, up to ∼50% of the dry protein mass,
of protein inhomogeneities in the used material84 or
to the high thermodynamic driving force used in ref
79 that may have caused a kinetic phase transition
to a rough growth interface.85,86

2. Localization of 2D Nucleation: Bulk-Transport
Nonuniformities and Defect Pinning

Interferometric studies of the evolution of growth
morphologies of lysozyme provided the first evidence
for localization of 2D nucleation.25,32-34,87 While in-
ferior in spatial resolution to AFM, interferometry
is nonintrusive and permits the study of microscopic
morphologies across entire macroscopic facets. This
makes it possible to correlate bulk-transport-induced

compositional inhomogeneities and the response of
the crystal morphology. A high-resolution interfero-
metric approach (200 Å depth resolution, image
acquisition times ∼3 s) was developed specifically for
protein crystallization studies.34 The method uses one
face of a growing protein crystal as one of the
interferometer mirrors. Spatial and temporal infor-
mation about the surface relief is extracted by
digitizing the interferometric intensity and its time
variations. In this way, information about the growth
step source activity is obtained by monitoring the
facet slope p (proportional to step density) in the
neighborhood of step generators. The time history of
the tangential step velocity v is also recorded since
changes in v reflect changes in the mechanism of
growth unit incorporation.

Figure 6 shows the development of the morphology
of a (101) face as a function of crystal size and
supersaturation σ ) ln(C/Ceq), C and Ceq being the
actual and the equilibrium protein concentrations.87

For the small crystal (Figure 6a), growth did not start
until σ > 1.3 and the flat face was preserved as the
crystal grew. Hence, it was concluded that growth
steps were generated by randomly distributed 2D
nucleation, in agreement with earlier observations
on lysozyme using electron microscopy and AFM, see
section II.A.1 and refs 72-75. With increasing su-
persaturation/growth rate and facet size, layer gen-
eration preferentially occurred along the crystal
edges. The specific nucleation sites moved with time,

Figure 4. Series of AFM images showing the incorporation of a microcrystal 15 µm × 8 µm into a larger growing crystal
of the protein canavalin. A lattice mismatch clearly exists between the two crystals. As the small crystal is consumed by
the larger one, a planar defect and a bundle of screw dislocations form and propagate into the larger crystal. (Adapted
with permission from ref 76).
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compare part b and c of Figure 6. With further
increases of facet size and supersaturation σ, the
steps were predominantly generated at the facet
corners rather than at facet centers (see Figure 6d).
This trend was observed in numerous experiments
on {101} and {110} faces. This change in location of
the nucleation sites can be explained by an increase
in the nonuniformity of solute supply from the bulk
nutrient as the crystal size and growth rate
increase.88-91 This leads to higher interfacial super-
saturation (and, thus, a higher probability of nucle-
ation) closer to the crystal’s edges. Recently, using
atomic force microscopy, the same transition from
random to edge-localized 2D nucleation was found
for ferritin and apoferritin crystals.83 Since the dif-

fusivity of the large ferritin molecules is significantly
lower than that of lysozyme, the characteristic trans-
port length is greater and the transition between the
two modes occurs at sizes of about 200 µm.

In a few observations, however, steps persistently
originated at locations near corners or edges, even
at small crystal sizes or low growth rates; see, e.g.,
the frame sequence of Figure 4 in ref 92. Yet, these
crystals did not grow at σ e 1.6. Thus, apparently
no active dislocation step sources were present, and
the pinning of the step generation locations was
probably due to other lattice defects93-95 that can
locally enhance 2D nucleation.95-98

Thus, it appears that localized generation of new
growth layers is quite common in protein crystalliza-
tion, especially when crystal sizes reach those needed
for X-ray structure determinations. This leads to long
trains of quasiparallel steps propagating along the
interface. Parallel step trains such as this are prone
to unsteadiness that results in defects. This will be
discussed below in sections IV-VI.

3. Evolution of the Dislocation Sources of Growth Layers
As above, this evolution was studied using inter-

ferometry.87 The crystal face, shown in Figure 7, was
initially free of screw dislocation step sources. At
smaller crystal size and growth rate, the surface was
flat, indicating growth by uniformly distributed 2D
nuclei, Figure 7a. The higher growth rate and su-

Figure 5. AFM visualization of interfacial morphology
during growth of a (111) face of cubic apoferritin crystals:
(a) rough surface (Adapted with permission from ref 79);
(b) smooth facet growing by 2D layer generation and
spreading.

Figure 6. Development of growth morphology on a (101)
HEWL face with crystal size and supersaturation, in the
absence of an active dislocation step source. Interferometric
visualization of growth morphology. In this method, the
crystal face of interest is used as one of the mirrors of a
two-beam interferometer. Thus, if the crystal is aligned so
that the singular crystal planes are perpendicular to the
incident beam, the interferograms represent topographic
maps of the interface. Time elapsed between b and c is 20
min. Supersaturation indicated for each frame. (Reprinted
with permission from ref 87. Copyright 1996.)
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persaturation σ, in Figure 7b caused nucleation along
the facet edges to dominate. The temperature was
then lowered in steps to obtain supersaturation levels
of σ ) 2.84 and subsequently σ ) 3.22. After a few
hours, T was increased to 20 °C (σ ) 1.64). The facet
morphology remained essentially identical to Figure
7b. The only effect of these sharp supersaturation
changes was the appearance of a second crystal on
top of the first one. No interference fringes appeared
on its top face. This means that the new crystal was
substantially misoriented with respect to the first
one. This explains why no steps originated from the
reentrant angle between the two crystals, in contrast
to Figure 3 in section II.A.1. The new crystal grew
much more rapidly than the first one, even at low
σ’s, as can be seen from their relative change in
lateral dimensions in Figure 7c-f.

After overnight growth at σ ) 1.64, a hillock was
observed at the lower left part of the facet of the first
crystal, Figure 7c. This hillock persisted for about a
day, in which the studied face grew about 13 µm.
Hence, the hillock was most likely formed by disloca-
tion outcrops at this location. Then steeper hillocks
(visible in Figure 7d) supplied steps that eventually
covered the facet. The supersaturation was kept
constant for several hours, during which the top face
grew by about 4 µm and the growth hillock became
much steeper, Figure 7e. After further growth at σ
) 0.83, the hillock slope increased further, Figure 7f,
despite the lower supersaturation. Upon further
decrease to σ ) 0.55, the hillock slope remained
practically unchanged.

The continuing (and apparently anomalous) in-
crease of the hillock slope at constant or decreasing
σ can be explained as follows. The dislocation groups
active in Figure 7c-f have probably formed in
response to the drastic temperature decreases or
supersaturation increases. The response is most
likely manifested through the trapping of a foreign
particle or a drop of nutrient liquid.99 Since initially
no growth activity resulted, the dislocation group
must have had a net Burgers vector (vector sum of
the vectors of lattice mismatch comprising each
dislocation in the group100) of zero and a large
circumference.64,101,102 Closely packed dislocations
tend to diverge during growth since this decreases
the elastic energy of the group.103 When the distance
between any pair of neighboring dislocations reaches
about 10 critical 2D-nucleus radii,64,104,105 one (or
more) dislocation group(s) will start generating growth
steps, provided that it has a smaller circumference
and larger net Burgers vector. Furthermore, as the
dislocations continue to fan out, their activity will
increase. If several of the secondary (or tertiary)
dislocation bunches attain growth activity, they will
compete and interact.

Observations of long-term changes and short-term
variations in the activity of the growth step sources
have implications for the unsteady step dynamics to
be discussed below. Since the unsteady behavior
depends on the magnitude of the triggering pertur-
bation, these observations indicate that there will
always be a source of step density unsteadiness.

Figure 7. Interferometric monitoring of the growth morphology on a (110) face of a lysozyme crystal. Between b and c the
supersaturation was temporarily increased to 2.84 and 3.22 (see text). This results in the dislocation step sources seen in
c-f. (Reprinted with permission from ref 87. Copyright 1996 Elsevier Science.)
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B. Kinetics of Step Propagation

1. The Kinetic Coefficient for Incorporation into Steps
The dependence of the step propagation velocity v

on the thermodynamic supersaturation ∆µ/kBT ≡ σ
[) ln(C/Ceq)] can be postulated as

In eq 1, âstep is the kinetic coefficient for incorporation
into the steps, Ω is the crystal volume per protein
molecule, and C is the protein molecular concentra-
tion in the solution. Typical Ω values are as follows:
for lysozyme, 3 × 10-20 cm3; for ferritin/apoferritin,
1.56 × 10-18 cm3; for the satellite tobacco mosaic
virus, 4.2 × 10-18 cm3. This is significantly greater
than the value for a typical inorganic system, am-
monium dihydrogen phosphate, for which Ω ) 1.07
× 10-22 cm3. The dimensionless product ΩC accounts
for the change in molecular density during crystal-
lization. Typical values vary from 0.06 for a 50 mg/
mL lysozyme solution down to 5 × 10-5 for a close to
equilibrium 0.023 mg/mL apoferritin solution.

Step velocity is often expressed as a function of the
protein concentration in the form

This expression can be derived from basic kinetic
principles.106 However, this derivation requires strong
assumptions about the mechanism of incorporation
of the molecules into the steps. Molecules are as-
sumed to enter the steps directly from the solution
without undergoing adsorption or surface diffusion.
As discussed in section II.B.2, for at least two of the
proteins studied to date, canavalin and lysozyme,
there exists significant evidence that incorporation
into steps is preceded by adsorption on the surface
followed by surface diffusion. Before sufficient studies
are done to confirm that this more complicated
growth mechanism is limited to these two cases, the
use of the more general expression (eq 1) seems
preferable. Of course, given the actual and the
equilibrium solution concentrations corresponding to
the conditions at which v is determined, one can
easily convert from kinetic coefficients determined by
eq 1 to kinetic coefficients determined by eq 2.
Typically protein crystals are grown at supersatura-
tion levels of ∆µ/kBT ≈ 1-2 and the ratio
(C - Ceq)Ceq

-1/ln(C/Ceq) is about 5. Thus, the step
kinetic coefficient value based on σ should be cor-
respondingly higher than the value based on concen-
tration.

There has been speculation that the growth of
tetragonal lysozyme crystals may occur through the
incorporation of tetramers or octamers that form in
the solution prior to attachment to the crystal.107-111

The AFM evidence in favor of this hypothesis109,110

is ambiguous because the experimental resolution
required to quantitatively verify this was lacking.
Indeed, recent molecular resolution AFM investiga-
tions of the crystallization of a number of other
proteins show that these grew by incorporation of
monomers.83,112 Furthermore, careful static and dy-
namic light scattering investigations24,25,113,114 of the

lysozyme solutions from which the crystals grow have
not revealed the presence of any species other than
the lysozyme monomer.

Measurements of the step kinetic coefficient have
been made using interferometric and scanning probe
techniques. They involve measurements of step ve-
locity v at 10 different supersaturation levels or
protein concentrations. The kinetic coefficient is
determined using a fit to an assumed linear depen-
dence of v on σ. Often, the data scatter due to other
factors (see argument below) is insufficient to dis-
tinguish between eqs 1 and 2.

The values of â taken from the above references
are as follows: lysozyme (110) face, 1.4 × 10-4 cm/s;
lysozyme (101) face, 2.8 × 10-4 cm/s; ferritin, 2 × 10-4

cm/s; canavalin, 10-5-10-4 cm/s; satellite tobacco
mosaic virus, (6 ( 2) × 10-4 cm/s; catalase (001) face,
3.2 × 10-5 cm/s; and thaumatin (101) face, 2 × 10-4

cm/s.
Note that eqs 1 and 2 relate the step velocity to

the “bulk” protein concentration or supersaturation,
i.e., those in the crystallization container far from the
crystal. However, the solution that is in contact with
the crystal has a different concentration or super-
saturation. Protein crystals are typically grown from
unstirred solution, which, even in the presence of
buoyancy-driven convection, leads to the existence of
a zone depleted with respect to the solute at the
growth interface. The reason for this depletion is the
comparable rates of mass transport to the crystal-
lization interface and through this interface. The
characteristic diffusive mass transport rate in the
solution D/δ ) 1 µm/s ) 1 × 10-4 cm/s (D ≈ 10-6 cm2/s
is a typical protein solute diffusivity, δ (∼0.01 cm) is
the transport length scale, commensurate with the
crystal dimension). The rate of mass transport through
the crystallization interface may be estimated as the
ratio of the crystal growth rate R, typically on the
order of 10-100 Å/s, to the molecular density change
upon crystallization, ΩC, provided above. Values
range from 2 × 10-6 to 2 × 10-2 cm/s. The corre-
sponding Rδ/DΩC ratios of 0.02 and 200 indicate,
respectively, an insignificant ∼2% depletion of the
interfacial solution with respect to the bulk concen-
tration or purely diffusion-controlled growth regime
with a constantly decreasing interfacial concentra-
tion. Depleted zones at the protein crystal-solution
interface have been experimentally observed using
Mach-Zender interferometry and Schlieren tech-
niques to visualize concentration fields around grow-
ing lysozyme crystals115-116 and predicted in detailed
numerical simulations of the convective-diffusive
transport.88 This depletion lowers supersaturation at
the interface and the steps to move slower than
expected based on the bulk driving force. The de-
crease in step velocity (i) is larger at higher crystal
growth rates, (ii) increases with crystals size, and (iii)
is location dependent, i.e., facets’ centers are exposed
to lower supersaturation than the facets’ edges, see
section II.A.2.

Another factor that may lead to deviations from eqs
1 and 2 is that steps compete for growth material
supplied from the bulk solution. The zone of lower
solute concentration in the solution around a step

v ) âstepΩCσ (1)

v ) âstepΩ (C - Ceq) (2)
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tends to attain the shape of a half cylinder with the
step as its axis. If two steps are too close, these
cylinders overlap and both steps get less solute than
they would if they were far apart. Thus, closely
spaced steps move slower that steps further apart.
Such dependencies of the step velocities on interstep
distance have been recorded for lysozyme87,92 and
canavalin.118 Scaling arguments suggest87 that the
competition for supply from the bulk should be too
weak to cause any discernible effects. Thus, it was
assumed that the strong effect of step density on step
motion is due to solute adsorption on the interstep
terraces followed by surface diffusion toward the
steps. The competition for the adsorbed solute mol-
ecules between each pair of steps bounding a terrace
causes the delay in step motion observed in experi-
ments. For further discussion of this step-step
interaction, which is an important component of the
nonlinear step dynamics, see section II.B.2.

A third factor is related to the solution behavior of
the proteins. The charge on the protein molecules is
to a large extent determined by the solution acid-
ity.119 Thus, it is not surprising that at different pH
values the step kinetic coefficient on canavalin crys-
tals was found to be different, see Figure 8 and ref
118.

Besides these intrinsic reasons for deviations
from eqs 1 and 2, step velocities may also be affected
by impurities. Two mechanisms through which
impurities can affect step motion are typically dis-
cussed in crystal growth literature. The “stopper”
mechanism120-122 assumes that the impurity mol-
ecules are adsorbed on the interface and the steps
have to bend to pass between them. The resulting
curvature in the step profile increases the chemical
potential of the steps, lowers the potential difference
that drives step motion, and, thus, slows the steps
down. It has been shown that the dependence of step
velocity on σ in this case is characterized by a “dead
zone” at σ < σ* in which no growth occurs. At higher
supersaturations >σ*, eq 1 or 2 applies, i.e., step
velocity is unaffected by the impurities. Evidence for
the action of this mechanism has been found for
lysozyme, based on averaged (over several
hours)32,33,87,123 and microscopic level124 kinetics.

The second impurity action mechanism assumes
that impurities occupy a fraction of the growth sites

at the steps and, thus, decrease the step kinetic
coefficient, while the linear relation between the step
velocity and the driving force is preserved over the
entire range of σ or C.125,126 Evidence for this type of
impurity action has been found during lysozyme
crystal growth in the presence of other proteins.87 The
effect of impurities during lysozyme growth are
illustrated in Figure 9a, which compares the step
velocities measured in three solutions with different
impurity levels.

The effects of impurities will also depend on their
transport to the growth interface. Figure 9b shows
step velocity variations with supersaturation re-
corded while the crystal dimension in the direction
lateral to the observation direction increased signifi-
cantly. The nutrient solution contains about 5% of
other protein impurities that are known to lead to
significantly lower growth rates, see Figure 9a. The
size increase leads to longer transport lengths and
hinders impurity supply to the facet center. As a
result, the step velocity at the facet center increases,
reaching a maximum at σ ) 2.0, while v only slightly
increases at the facet edges that receive better
impurity supply. For larger sizes and higher growth

Figure 8. AFM determinations of the dependence of the
step velocity on canavalin concentration as a function of
pH, as indicated in the plot. (Adapted with permission from
ref 118.)

Figure 9. Dependencies of step velocity on supersatura-
tion determined by interferometry: (a) in solutions con-
taining 0.01%, 1%, and 5% (w/v) of other protein impurities
(Higher impurity concentration leads to slower step mo-
tion). Crystal sizes in all cases <100 µm; (b) at three facet
locations, solute and impurities transport conditions altered
during the monitoring by the rapid crystal size increase
from <100 µm at σ < 1.2 to above 250 µm at the final data
points at σ ) 3.25, arrow indicates sequence of σ changes.
(Reprinted with permission from ref 87. Copyright 1996
Elsevier Science.)
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rates at even higher supersaturations, step velocity
is no longer affected by the nonuniform impurity
supply,127 and then the lower supersaturation at the
facet center results in lower step velocity.

2. Interstep Interactions

The idea that step-step interactions that exist in
some inorganic solution growth systems128,129 may
also be present during protein crystallization is
supported by the results of morphology studies.
Figure 10 illustrates the morphology of a (110)
lysozyme crystal face. Five sources (A-E) along the
facet edges and three sources (F-H) in the middle
of the facet dominate the layer or step generation.
This step source localization is likely associated with
higher local densities and/or activities of outcropping
defects, see section II.A.2, or to the higher σ’s at the
edges.

Figure 10b shows the height profile, calculated as
in ref 34, along the line indicated in Figure 10a. The
local vicinal slope p in Figure 10c is about 4 times
lower at the facet edges than at the facet center.
Measurements of the step velocity at various loca-
tions showed a 4-fold decrease of v from edge to
center, independent of step propagation direction.
The product of p and v, the growth rate R, is thus
uniform over the facet.

Although the convex shape in Figure 10 agrees
qualitatively with the expected stabilization mecha-
nism through slope variation,131,132 the large values
of pcenter/pedge (∼4) in Figure 3 pose an interesting
problem. According to the simple model for slope
readjustment to accommodate lower supersaturation
at the facet center, such low slope ratios would
indicate differences in interfacial supersaturation
between the center and corner of several hundred
percent. However, model calculations,88 based on
realistic kinetics and transport parameters for
lysozyme, predict σ nonuniformities over the facet of
less than 20%. A qualitative explanation is that as
the step density (slope) increases in response to the
lower supersaturation, the steps slow due to increas-
ing overlap of their nutrient field. This further
decreases the distance between them and, thus,
increases the slope.

Further independent evidence for the overlap of
step diffusion fields was deduced from a dissolution
experiment (step motion in dissolution is considered
symmetrical to that in growth133,134) with a flattened
crystal facet. Etching at low supersaturation left the
central regions flat. This means that the steps that
were present on the facet prior to etching remain
essentially equidistant, indicating the absence of
interfacial σ-nonuniformities. At the same time,
etching steps formed at the edges moved inward. The
resulting edge profile had a gradual decrease in slope
from edge to center from phigh ≈ 40 × 10-3 to plow )
6 × 10-3. Since the step generating capacity of the
edges is constant, the probable reason for the spa-
tially decreasing slope is an overlap of the step
diffusion fields, see model in ref 133. Further evi-
dence in support of interstep interaction is discussed
in section IV.A.

Assuming incorporation into steps from the surface
following serial volume and surface diffusion,136,137

the requirement that the slope ratios in Figure 10
be reproduced leads to some very reasonable values
of the kinetic parameters. A reasonable presentation
of the rather cumbersome relation in ref 136 would
be

where bstep ) λs
2DΩC/Λsh is an effective step kinetic

coefficient and kp ) (λs
2/Λsh)(1 + δ/Λ)p is a dimen-

sionless number characterizing the relative impor-
tance of the bulk and surface diffusion for step
propagation. Λ is the resistance for adsorption to the
surface, Λs is the resistance for incorporation into the
step from the adsorbed state, λs is the characteristic
surface diffusion length, and h is the step height. In
the terms of eq 3, the requirement for step field
overlap is kp ≈ 1. If bulk transport is fast or if step
motion can be correlated with interfacial protein
concentration, δ ) 0.

The only other protein crystallization system for
which interactions between steps have been system-
atically studied is canavalin.118 The results of in-situ
atomic force microscopy investigations and a simple
diffusion analysis suggest that surface diffusion,

Figure 10. Interferometric visualization of the growth
morphology of a (110) face of a lysozyme crystal growing
at σ ) 2.4. (a) Interferogram, the interfringe distance in
the [110] directions is about twice that along [001], i.e., that
the steps propagate half as fast in the [001] directions. In
analogy to inorganic systems, this âstep anisotropy could
either be intrinsic or impurity-induced;130 dashed line
indicates the edge of the viewing field rather than the facet
edge). (b) Height profile along the line shown in a with
arrows indicating the step motion direction. (c) Magnitude
of the vicinal slope p along the line. (Reprinted with
permission from ref 92. Copyright 1995 Elsevier Science.)

υ )
bstepσ

1 + kp
(3)
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rather than bulk diffusion, is the controlling mech-
anism of solute transport to the steps. The strongest
evidence in favor of this claim is the homogenization
of an initially nonuniform double-step train, Figure
11. Here the dislocation step source on top of a hillock
has a value of 2 unit step heights. It produces two,
initially coupled steps. The difference between the
two steps is that the upper step has a narrow terrace
at its lower edge while the lower step has the same
narrow terrace at its upper edge. Gradually, as the
steps move away from their source, the terrace
widths homogenize. Bulk diffusion alone is unlikely
to account for this homogenization. The bulk supply
fields to these steps are identical, and with or without
bulk diffusion field overlap, the steps should remain
coupled. Solution flow in the direction opposite to step
motion could result in homogenization.138,139 How-
ever, homogenization is observed in all directions. As
with the lysozyme results above, these observations
could be explained not only qualitatively but also
quantitatively, simply by assuming asymmetry of the
kinetic coefficient of incorporation into a step from
the left and from the right terrace (the Schwoebel
effect140,141). More importantly, such asymmetry is
only possible if incorporation into the steps occurs
via a multistage process involving adsorption on the
interface and surface diffusion toward the steps.

The interaction between steps through overlapping
of their surface diffusion fields discussed in the above
subsection is an important factor in the nonlinear
dynamics of steps that causes the unsteady behavior
discussed below.

III. Defects, Strain, and Molecular Disorder in
Protein Crystals

All defects known for inorganic crystals, such as
point defects (vacancies, interstitials, or incorporated
impurity species) as well as dislocations, grain and
twin boundaries, occlusions of mother liquor and
crystallites, occur in protein crystals. Some of the
mechanisms that lead to the creation of such defects
were discussed in section II.A.1. X-ray projection
topography142 has been used to visualize their loca-
tions and distributions in the crystals.143-147 All
studies reflect the relatively high strain levels of the
protein crystals as compared to inorganic crystals,
which cannot always be correlated to the presence
of any of the linear, planar, or 3D defects. Such high
strain levels can be attributed to nonuniform impu-
rity incorporation or to molecular disorder in the
crystals. Nonuniform distribution of impurities is
associated with unsteadiness in growth kinetics (see
section IV.B) that may occur at various stages of the
growth due to different reasons. For instance, higher
impurity amounts in the central regions of lysozyme
crystals and associated higher precipitant concentra-
tions have been inferred from combined chemical-
biochemical and X-ray topography studies.148 These
findings were recently supported by the results of a
fluorescence investigation of impurity distribution.149

As discussed in section IV.B, unsteady kinetics and
step bunching may also cause nonuniform defect and
impurity incorporation in the crystals.

To characterize crystal quality, X-ray rocking curve
widths have been determined for many of the crystals
discussed above. It was noted that these widths are
about an order of magnitude higher than expected
for perfect protein crystals. This was attributed either
to higher elastic strain in the crystals or to a block
structure of the studied specimens. There has been
considerable discussion about the correlation between
the rocking curve widths and the diffraction resolu-
tion limits. Clearly, higher rocking curve width
means broader diffraction spots, lower accuracy of the
determination of their coordinates, lower ratio of the
maximum intensity in a spot to the surrounding
noise, and, hence, lower resolution.150,151 This seems
to be especially true for crystals that exhibit broad-
ening due to strain. However, if the wide rocking
curves are due to block structure, the beam in a X-ray
diffraction arrangement can be focused on only one
of these blocks and high-resolution structure deter-
minations can still be achieved.152

The size of the protein molecules is about an order
of magnitude larger than the range of interactions
between them.106 If recalculated per unit contact
area, the strength of these interactions is also rather
low. This is considered to be one of the reasons for
the relatively slow protein crystal growth kinetics
and may also underlie the presence of an imperfec-
tion unique for this type of crystals: rotational
disorder of the protein macromolecules. This disorder
has been studied by electron microscopy of freeze-
etched and metal-decorated crystals.153 This tech-
nique is based on coating under vacuum of frozen-
hydrated protein crystals with a few monolayers of
a low melting metal, such as Au or Ag. The distribu-

Figure 11. AFM image of a growth spiral on a canavalin
crystal. Two dislocations with closely located outcrops
produce two steps. A third dislocation outcrops to the upper
right of these two. The steps generated by the first two
dislocations propagate toward the facet periphery. Initially,
the two steps are close. As they move on, the distance
between them increases and becomes equal to half the
spiral step. (Adapted with permission from ref 118.)
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tion of the metal clusters on the surface of the protein
is related to the topochemistry of the molecule’s
surface.154 This technique was used to study two- and
three- dimensional crystals that allow an averaged
decoration pattern to be identified155-158 as well as
noncrystalline specimens.159,160 On the decoration
pattern, various features of the packing of the top
crystallographic plane can be visualized, including
the rotational orientation of the individual mol-
ecules.161 When this technique was applied to, among
many others, hexagonal crystals of lumazine syn-
thase, it was found that the surface molecules on an
undisturbed surface adopted two possible orienta-
tions in an alternating manner according to the
crystal packing, Figure 12. Orientational disorder
was observed at and around a dislocation, where
patches of molecules showed “wrong” orientations.162

Similarly, the molecules on the surface of ferritin
crystals seemed to possess no orientational order.162

These results on the molecular orientational dis-
order in protein crystals, although still limited to only
a few materials, indicate that even if it were possible
to grow the crystals from a perfectly pure solution,
defects and related strain can still be introduced and
compromise the crystal’s utility.

IV. Unsteady Growth Kinetics and Step Bunching

A. Phenomenology and Dependence on
Transport Parameters

Interferometric monitoring of the local growth rate
R, vicinal slope p, and tangential velocity v during
the growth of lysozyme revealed that the growth
variables are not steady and fluctuate by as much
as ∼80% of their average values, Figures 13 and
14.163 The variations in p, which is proportional to
the step density, indicate that the fluctuations are
due to the passage of step bunches, i.e., the steps on
the interface are not equidistant but rather grouped
into a pattern of lower and higher step density. An
example of such a wave of high step density moving
on a crystal of another protein, ferritin, is shown in
Figure 15.

Figure 12. Silver-decorated (010) face of a lumazine
synthase crystal. (a) Distribution of silver spots along the
surface, from which the orientation of the individual
molecules can be deduced. As shown in c, in this crystal
molecules take one of two orientations: with the 5-fold axis
upward, represented by black circles in b, or with the 5-fold
axis tilted forward, open circles in b. (b) Schematic il-
lustrating the distribution of the two molecular orientations
on the surface. Perfect crystals exhibit alternating “white”
and “black” molecular rows, deviations from this pattern
indicate molecular disorder. Arrows in a and rectangles in
b highlight locations of accumulated misoriented molecules.
(Adapted with permission from refs 155, 160, and 162.)

Figure 13. Time traces of normal growth rate R, local
slope p, and tangential (step) velocity v recorded at center
of the {110} facet of the same crystal at three supersatu-
rations, indicated in the plots. Crystal size ∼250 µm. The
local determinations of R represent integrals of the inter-
ferometric intensity over interfacial areas of ∼0.5 × 0.5
µm2, while the p values are averaged over distances of ∼3
µm; see ref 34. The solution temperature in the cell was
uniform and stable within 0.01 °C. (Reprinted with permis-
sion from ref 163. Copyright 1996.)
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The excursions of p and v tend to be in opposite
directions: high and low step densities are associ-
ated, respectively, with low and high tangential
velocity. This indicates strong overlap of the steps’
nutrient supply fields (see section II.B.2). Tests using

solutions of three distinct purity levels, (i) as supplied
by Sigma and (ii) by Seikagaku and (iii) Seikagaku
lysozyme purified to 99.9% with respect to higher
molecular weight proteins,56 showed no dependence
of the fluctuations on solution purity.

The characteristic fluctuation time ∆t (average
time between major excursions) is on the order of 10
min. For comparison, the characteristic step genera-
tion time τstep ) h/Rh with the step height h of at most
a few hundred Å and the average growth rate Rh of
some 10 Å/s is on the order of 10 s. Hence, in contrast
to the findings with barium nitrate and potash
alum,164,165 the fluctuation time scales are at least
several 10 times longer than τstep. However, in
another investigation, barium nitrate showed fluc-
tuations in R with 1 min < ∆t < 10 min,166 which
were interpreted in terms of moving multidislocation
step sources of varying activity. With lysozyme, ∆t’s
obtained with 2D nucleation- or dislocation-step
sources were comparable. Therefore, we conclude that
these fluctuations are not merely a reflection of the
dynamics of multidislocation step sources, though
they may affect them.

Figure 13 shows fluctuation traces recorded at the
same location of a crystal at increasing supersatu-
rations. Note that the fluctuation amplitude of both
p and v is independent of σ. At low σ, v(t) and p(t)
are largely in counterphase. With increasing σ, the
phase difference between fluctuations in v and p
becomes random. Consequently the R excursions
increase. The characteristic time of the fluctuations
∆t (average time between major excursions) de-
creases with supersaturation. At σ ) 2.84 (Figure
13c), ∆t drops to <10 min. In other experiments at
comparable or higher supersaturations, ∆t’s as short
as 5 min have been observed. Figure 14 shows a
comparison between the fluctuations observed at the
facet center for two different crystal sizes a. The
variations in R, p, and v and the fluctuation fre-
quency significantly increase with a.

As observed in Figure 13, at higher supersatura-
tions the fluctuation amplitude of R increases more
than those of p and v. This can be understood in
terms of transport considerations. Expanding v(t) in
R(t) ) p(t)v(t), the growth rate R at any point on the
interface can be written as

where b(p) is a kinetic coefficient for incorporation
of growth units into steps and σs is the supersatu-
ration at the interface. In this system, b(p) decreases
with increasing p due to the overlap of the steps’
(surface) diffusion fields, see section II.B.2. At low
average growth rates, there is sufficient time after
the passage of a step bunch for the local σs to recover.
Hence, the local σs is not affected significantly by
variations in step density. As a consequence, the
opposing deviations in p and b(p) largely compensate.
This yields a nearly steady R. At higher average R,
however, the local σs is strongly modulated by the
passing step bunches. This results in v fluctuations
that are out-of-phase with those in p, leading to
pronounced nonsteady R.

Figure 14. Increase of fluctuation amplitude at facet
center location with crystal size a, indicated in the plots; σ
) 2.84. (Reprinted with permission from ref 163. Copyright
1996 American Physical Society.)

Figure 15. AFM imaging of a step bunch propagating on
the surface of a growing apoferritin crystal. (a) AFM image,
individual growth steps move from left to right. (b) Inter-
face profile showing the nonuniform distribution individual
growth steps 106 high and local slope along line in a.
(Adapted with permission from ref 83.)

R(t) ) p(t)b[p(t)]σs(t) (4)

Dynamics of Layer Growth in Protein Crystallization Chemical Reviews, 2000, Vol. 100, No. 6 2073



More formally, the relation between the changes
in the surface supersaturation and normal growth
rate can be understood if one considers the time
derivative of eq 4

or

Here

where k is a (surface diffusion) step interaction
parameter see eq 3. We consider systems for which,
see section II.B.2,

It then follows that

Equation 9 reflects the observed compensation of the
opposing p and v fluctuations due to the strong
interstep interaction expressed by eq 8. Thus, the
first term on the right-hand side of eq 6 is vanishingly
small and

As a consequence, in the absence of σs modulations,
R should be steady even though p and v fluctuate.

Furthermore, we can show that even under condi-
tions that do not induce R fluctuations, step bunches
that lead to variations in p may still form. From eq
5, with ∂R/∂t ) 0

In contrast to eq 10, the action of (∂σs/∂t) upon (∂p/
∂t) is amplified by the large value of [1 + (p/b)(∂b/
∂p)]-1. Thus, even small perturbations in σs that do
not result in significant R fluctuations may lead to
significant fluctuation in local slope/step density. In
addition, eq 11 helps to explain the significance of
step field overlap for step bunch formation and
ultimately for the kinetics fluctuations. If the condi-
tion of eq 8 is not satisfied, 0 g (p/b)(∂b/∂p) . -1
and small σs perturbations may only lead to insig-
nificant p variations. This is similar to the interstep
interaction effects on microscopic morphology forma-
tion on a much larger length scale. In the latter case,
supersaturation nonuniformities of e10% between
facet center and edge induce up to 5-fold increases
in average slope, see section II.B.2 and refs 92 and
167.

B. Correlation between Unsteady Kinetics and
Crystal Imperfections

Although kinetics unsteadiness, step dynamics,
and step bunching are an intriguing area of research,

these results would only be relevant to the goal of
other protein researchers if the unsteady kinetics
causes significant deterioration of crystal quality. In
search of a spatiotemporal correlation between growth
rate fluctuations, step bunching, and striations in the
crystals, similar to that found in semiconductor
crystallization,168 a few crystals were nucleated on a
horizontal glass plate in the growth cell. Since lower
solution purity enhances the visibility of striations,87

protein material with ∼1% of covalently bound
lysozyme dimer was used.56 After 1.5 h of interfero-
metric monitoring of a suitably positioned (110) face,
the cell was opened and the glass plate was turned
vertically since visualizations of the striae (micro-
scopically thin layers of defects) require viewing in
a direction parallel to the plane in which they lie. To
avoid solution evaporation and optical distortions
from curved liquid-air surfaces, the cell was closed
and refilled with solution.

The interfacial interferograms of the (110) face
indicated that the growth steps are generated at the
facet center and mostly spread toward the 〈001〉 and
〈001h〉 directions.169 Figure 16a presents a polarized
light micrograph of the grown crystal viewed parallel
to the interface. The two straight striations were
intentionally induced by a 1 °C temperature change170

to mark the beginning and end of the interferometric
data collection. In this low-resolution view, these
markers appear parallel to the (110) plane. Between
the markers, in the lower, left region, one can discern
a system of closely spaced, inclined striations. The

Figure 16. (a) Polarized light reflection image of the
crystal viewed in a direction parallel to the monitored face,
with the focal plane positioned in about the middle of the
crystal. (Insert) 2:1 enlargement of the squared area with
enhanced contrast to better visualize the striations. Lines
indicate location of interferometric monitoring. Arrows
point to striations caused by |∆T| ) 1 °C before and after
monitoring. Orientation of crystallographic axes is shown
on the right. Time traces of (b) growth rate R and (c) vicinal
slope p recorded at the location corresponding to lines in a
at σ ) 1.9 (T ) 20 °C). (Reprinted with permission from
ref 169. Copyright 1998 American Physical Society.)

∂R
∂t

) [(1p + 1
b

∂p
∂t )∂p

∂t
+ 1

σs

∂σs

∂t ] R (5)

1
R

∂R
∂t

) (1 + p
b

∂b
∂p) 1

p
∂p
∂t

+ 1
σs

∂σs

∂t
(6)

b(p) ) b0(1 + kp)-1 (7)

kp . 1 (8)

p
b

∂b
∂p

≈ -1 (9)

∂R
∂t

≈ R
σ

∂σs

∂t
(10)

1
p

∂p
∂t

≈ (1 + p
b

∂b
∂p)-1 1

σs

∂σs

∂t
(11)

2074 Chemical Reviews, 2000, Vol. 100, No. 6 Vekilov and Alexander



inclination with respect to the (110) plane is between
10° and 15°. This corresponds to striae originating
at macrosteps which should be inclined with respect
to the singular plane by an angle R, related to the
local normal growth rate R and step bunch velocity
vbunch by

Substituting the interferometrically determined
values from Figure 16b,c (for details, see ref 34) yields
R ≈ 14°, well within the range extracted from Figure
16a.

For further evaluation, an enlarged image was
used with the black line in both images indicating
the 32 µm displacement of the interferometric obser-
vation location during the measurement period.
About six striations cross this line of growth between
the markers in Figure 3a with an average spacing
∆x of 5-6 µm. The number of striations equals the
number of step bunches with slope >2 × 10-2 in the
respective local slope time trace in Figure 16c.
Furthermore, the heavier striations at the beginning
of the monitoring interval correspond to steeper step
bunches.

A more quantitative correlation between the optical
image of the striations and the vicinal slope trace p(t)
is hampered by the nonlinearities involved in the
striation imaging process in Figure 3a. Furthermore,
the step orientation, density, and number of the step
bunches may vary in the direction perpendicular to
the step motion direction (for numerous examples of
such step patterns, see ref 168). This would lead to
variations in the optical thickness of the trailing
striations, whose projection on the (1h10) plane is
visualized in Figure 16a.

Yet, based on the above material, the formation of
compositional inhomogeneities in lysozyme crystals
grown under steady solution conditions can be clearly
correlated with the intrinsic instabilities of layer
growth dynamics. It may not be obvious how inho-
mogeneities on the micrometer scale may affect the
diffraction resolution obtainable from a crystal in the
sub-3 Å range. For this reason, it is important to note
that the maximum diffraction resolution is deter-
mined by the signal-to-noise ratio of high-index
reflections. Since high-index crystal planes have low
molecular density, much wider areas of rotationally
and translationally aligned molecules are needed to
enhance the intensity of the reflections from these
planes and increase their signal-to-noise ratios. Hence,
crystal imperfections on the scale of micrometers
(e.g., striations discussed here) and even tens and
hundreds of micrometers (block structures, twins,
etc.) affect the diffraction resolution that can be
obtained from a given crystal.

Another problem associated with step bunching is
the possibility of their evolution into overhangs,
Figure 17a.171 These arise because of the higher
supersaturation of the solution at locations further
from the interface, into which the step bunches
protrude. These overhangs may close, forming a line
of solution occlusions parallel to the step. Occlusions
of nutrient solution may also result from the loss of
lateral stability of the step bunch itself, Figure

17b.172,173 In this case, the lines of occlusions are often
perpendicular to the steps.

The results presented in this subsection indicate
that the kinetics fluctuations and the underlying step
bunching have detrimental effects on the quality and
likely on the utility of the growing crystals. Hence,
the mechanisms leading to such instabilities should
be studied further so that a means to minimize and
possibly eliminate them could be identified.

C. Macroscopic Models of Kinetics Unsteadiness
and Feasibility Tests

1. General Considerations
In section IV.A, it was shown that the R, v, and p

fluctuation amplitudes depend on the supersatura-
tion (average growth rate) and crystal size. These are
the variables that also strongly influence the local
transport conditions at the interface.90,91,174 The above
observations have been interpreted in terms of the
nonlinear dynamics of coupled transport and surface
kinetics (see discussions in refs 175-181). Since no
impurity effects on the fluctuations were found, it
was concluded that the observed fluctuations are
intrinsic to the system. Such intrinsic fluctuations
occur in many systems (physiological, biological,
chemical, and mechanical) that operate far from
equilibrium.182

Macroscopic theoretical treatments of rate fluctua-
tions in phase transformations have assumed that
bulk and interfacial processes are coupled. Further-
more, it is assumed that the bulk transport rate is a
linear function of the bulk solute concentration and
interfacial processes may be nonlinear functions of
the interfacial concentrations of the participating
species. Nonlinearities in interfacial kinetics can be
caused by chemical reactions that precede or compete
with incorporation into the crystal,175,176 impurity
effects, or a delay in the interface response to a
perturbation in the local concentration of a compo-
nent.177 The coupling of linear and nonlinear pro-
cesses results in unsteady rates with time constants
largely exceeding those of the individual steps.183 The
general trend that emerges from the above models177

is that for growth under pure kinetics or transport
control, where the interfacial concentration Cs ap-
proaches, respectively, the bulk concentration C∞ and
equilibrium concentration (solubility) Ceq, the system
is steady and all perturbations are damped. For
mixed control, however, the system is unsteady and

tan R ) R/vbunch (12)

Figure 17. Evolution of step bunches: (a) Overhang that
may collapse and form a line of inclusions parallel to the
steps; (b) Development of a cellular structure after the
lateral loss of stability. (Adapted from ref 171.)
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fluctuations about a mean rate occur. Maximum
response occurs if surface kinetics and transport have
a comparable influence on the overall growth rate.

The control parameter for the interfacial instability
can be expressed as a kinetic Peclet number, which
is the ratio of the rate constants for nonlinear
incorporation kinetics and bulk transport in the form

where âf is the face kinetic coefficient, D is the solute
diffusivity, and δ is a characteristic diffusion length
(commensurate with the crystal size). Values of Pek
, 0.1 or .1 indicate, respectively, purely kinetic or
transport-controlled growth in which perturbations
are damped and growth is steady. Intermediate
values characterize mixed growth control for which
both kinetics fluctuations and step bunching occur.
This criterion for the conditions that lead to damping
of growth perturbations can also be interpreted in
terms of the surface concentration Cs. This follows
from the fact that within certain general assump-
tions184

Thus, if Pek f 0, Cs f C∞, and if Pek f ∞, Cs f Ceq.
For more details on these findings and additional
references, see ref 163.

2. Numerical Model
For a feasibility test of this unsteady kinetics

mechanism, the transport fields from the bulk of a
solution to individual growth steps moving on a
faceted crystal were numerically simulated. Nonlin-
earity in the interface step kinetics is introduced
through a parameter for the overlap of the steps’
surface diffusion fields.

The geometry of the transport model is based on
the setup used in experimental investigations.34 As
depicted in Figure 18a, the crystallization cell is
approximated by a 2D closed domain of 1 mm height
and 6 mm width. A crystal of fixed size, 0.6 mm wide
and 0.3 mm high, rests on the middle of the cell
bottom. The initial lysozyme mass concentration in
the solution is C ) 50 mg/mL. At 12 °C, this gives
rise to an initially uniform value of the supersatu-
ration σ0 ) 2.78.

As indicated in Figure 18c, the solution-crystal
interface initially consists of equidistant microscopic
growth steps of height h ) 108 Å ≈ 0.01 µm with
singular terraces between them. With an initial
vicinal slope of the interface p0 ) 5 × 10-3 ,87 about
140 equidistant steps cover the half-facet at the
beginning of a simulation. Only diffusive transport
of solute to the growth steps was considered. To
resolve the concentration field about individual growth
steps, a mesoscale subdomain above the interface was
introduced, see Figure 18b. For the transport calcula-
tions, the actual vicinality of the interface is ignored
and the steps are assumed to move within a singular
horizontal interface, which is represented by the

heavy horizontal line in Figure 18b. The interfacial
concentration boundary condition for the domain is
tied to the protein consumption at the moving steps.

On the basis of the evidence reviewed in sections
II.B.1 and II.B.2, the velocity of the steps was
assumed to follow the relation

where bstep is the step kinetics coefficient and σs(n)
is the interfacial supersaturation at the nth step. The
group kp(n), with p(n) being the slope about the nth
step, accounts for the mutual deceleration of adjacent
steps through overlap of their surface diffusion fields.
The stronger the competition for nutrient among
neighboring steps, i.e., the larger kp(n), the lower is
v(n).

The specific form of eq 15 for the nonlinearity in
interfacial kinetics is based on the experimental
observations with lysozyme and NaCl as the precipi-
tant. Note that a different solution composition and,
thus, possibly different interfacial kinetics could
result in a different form of eq 15. Hence, different
fluctuation amplitudes and time scales can be ex-
pected for other systems.

Growth on a facet ceases when all initially imposed
steps have reached the center and the facet has
become singular. That is, growth can only be sus-
tained through the replenishment of growth steps.
Hence, in accordance with recent findings for lyso-
zyme, section II.A.2, it was assumed that at the σ’s
used in our simulations, growth steps are generated
by 2D nucleation at the edge of the crystal, where
the supersaturation is the highest. For details of the
stochastic nucleation formulation, the mesh sizes in
the bulk and ms domain, the numerical approach,
and the matching of the simulation data to the

Pek ) âf
δ
D

(13)

Cs ≈ C∞ - (C∞ - Ceq)
Pek

1 + Pek
(14)

Figure 18. Geometry and grids used in the simulations:
(a) bulk (global) mass transport, 45 × 21 grid; (b) interfacial
(mesoscale) subdomain, 1221 × 21 grid; (c) steps moving
in interface (heavy black line in Figure 1b). (Reprinted with
permission from ref 185. Copyright 1997 American Physical
Society.)

υ(n) )
bstepσs(n)

1 + kp(n)
(15)
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limited spatial resolution of the experiments, see ref
185.

3. Simulation Results

Results for R(t) and p(t) obtained in the middle of
the half-facet (150 µm from crystal corner) using the
diffusivity of lysozyme and an experimentally deter-
mined step interaction parameter k ) 500 are shown
in Figure 19. Note that in contrast to the experimen-
tal results (Figures 13 and 14), both the average
growth rate and slope obtained from the simulation
systematically decrease. This is due to the larger
ratio of crystal “surface area” to solution “volume”
in the 2D simulation model. As a consequence, the
bulk supersaturation and, thus, the theoretical value
of R decreases more rapidly than the experimental
one.

From the p(t) trace in Figure 19, one sees that the
growth rate fluctuations are due to the passing of
step bunches. The characteristic time between the
passage of major step bunches is several minutes.
This is again about 2 orders of magnitude longer than
the average step generation (nucleation) time of ∼5
s. To facilitate their quantitative comparison, we
have decomposed the simulated and experimental
R(t), respectively, into their Fourier components, see
Figure 20. To correct for the model-induced decrease
in average growth rate, the four lowest frequency
components were disregarded, see the dashed lines
in Figure 20a. The inset in Figure 20a shows R(t)
after deduction of these lowest components, together
with a trace resulting from the superposition of these
components alone. In comparing parts a and b in
Figure 20, one sees that the simulation reproduces
both the amplitude and characteristic time of the R
fluctuations observed in the experiments rather well.

To test the supposition that the fluctuation ampli-
tude depends on both the nonlinearity of the inter-
facial kinetics and the relative importance of bulk-
transport and interface kinetics, the model input
parameters were varied. It was found that shifts
toward kinetics control drastically reduced the am-
plitude of the fluctuations. Similar reductions in the

fluctuation amplitude were encountered on setting
the step surface interaction parameter in eq 13 to
zero. Thus, the simulations unambiguously confirm
that in analogy to the unsteady behavior of other
systems involving coupled bulk-transport and non-
linear kinetics (see section IV.C.1), both the nonlin-
earity in growth step kinetics and mixed transport/
kinetics control of the crystallization process are
necessary conditions for the growth rate fluctuations.

Further simulations shed light on the microscopic
evolution of the fluctuations and step bunches.185 It
was established that the fluctuations are associated
with morphological instability of the vicinal face, in
which a step bunch (macrostep) triggers a cascade
of new step bunches through the microscopic inter-
facial supersaturation distribution. This behavior is
well described in terms of the kinematic wave theory186

that relates step flow during the growth of crystals
to equations used to describe traffic flow.187-189

V. Microscopic Mechanisms of Instability and
Step Bunching

A. Linear Stability Predictions

Numerous microscopic models for unsteady growth
involve the formation, stability, and decay of step
bunches (macrosteps). Stimulated by detailed obser-
vations of various step patterns,190,191 dynamic step
bunching has been associated with surface
diffusion191-194 and different kinetic coefficients for
incorporation into a step from the upper and the
lower terrace (the Schwoebel effect.140,141

Of particular importance for this investigation is
an analysis of the stability of an equidistant step
train under convective-diffusive solute transport to
infinitesimal perturbations.138,195-198 It was found
that convective flow affects the development of

Figure 19. Growth rate R(t) and slope p(t) obtained in
simulations with stochastic nucleation mode, k ) 500, and
D ) Dlysozyme at the middle of the half-facet after data
processing to reduce spatial resolution to those of our
experiments. (Reprinted with permission from ref 185.
Copyright 1997 American Physical Society.)

Figure 20. Fourier decomposition of R(t). (a) Simulation
results: (inset) subtraction of the four lowest frequency
components of R(t), for details see text. (b) Experimental
results. (Reprinted with permission from ref 185. Copyright
1997 American Physical Society.)
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macrosteps if

and

where u• is the bulk solution flow velocity parallel to
the interface and vph is the phase velocity of the step
density wave with wavelength λ0. For order of
magnitude estimates, vph is assumed to be compa-
rable to the average step velocity υj. It is important
to note that the flow direction plays a crucial role for
the stability of the step train. Solution flow in the
direction of step motion causes step bunching in
response to perturbations with λ longer than

where pj is the average slope of the vicinal face
considered. Solution flow opposite to step motion
suppresses bunching. This behavior was observed in
forced solution flow experiments with ammonium
dihydrogen phosphate crystals.195

Buoyancy-driven flow, which, due to solutal density
gradients, is always present in terrestrial solution-
growth systems, can also affect the stability of step
trains. In most inorganic systems, however, the
inequality in eq 16 does not hold in unstirred solu-
tions. Typical values of u∞ are on the order of a
hundred µm/s,199 i.e., comparable to characteristic
v’s.128,129 In contrast, protein systems, due to their
slow interface kinetics, could provide an opportunity
to observe such interactions between natural convec-
tion and step motion. For instance, for lysozyme, υj
is typically 0.05-0.5 µm/s32,33,80 while u∞’s are about
10 µm/s.88,115 With this u∞, D ) 0.73 × 10-6 cm2/s,24

and observed step bunching wavelength λ0 ) υj∆t of
about 50 µm, we get u∞λ0/D ≈ 7. According to eq 17,
step trains should be affected by buoyancy-driven
flows. This should reduce the macrostep height along
step trains moving from the center to the periphery
of a horizontal facet since, in this case, the natural
convection flow is opposite to the step motion.88,200

On the other hand, as step bunches move toward the
center of a horizontal facet, their height can be
expected to increase. At the same time, evaluation
of eq 18 for lysozyme, with pj ) 5 × 10-3 87 and δ )
200 µm,88 yields a flow-induced critical wavelength
λc

f ≈ 30 cm. Since this is orders of magnitude larger
than the typical crystal sizes of O (100 µm), it is
unlikely that the fluctuations observed with lysozyme
are caused by flow-step train interactions.

These model analyses were further improved to
include stagnant solutions with purely diffusive
transport as well as mutual retardation of steps due
to their supply field overlap.198 The resulting equa-
tions cannot be solved in closed form without over-
simplifications. Thus, the only way to compare a
group of experimental results to theory is by solving
the governing equations numerically. When this was
done for lysozyme crystal growth, the instability
wavelengths and frequencies observed in the experi-

ments and simulations, reviewed above, were quite
different from those predicted by linear stability
analysis of step motion in flowing and stagnant
solutions.201 Hence, the causes for the unsteadiness
observed in ref 163 should be sought elsewhere.

B. Numerical Simulation of Suspected
Incorporation Pathway

In view of the failure of linear stability analyses
to account for the experimentally observed unsteadi-
ness, the evolution of step bunches triggered by
perturbations of different amplitude was simulated
numerically. Such an evolution may involve a non-
linearly amplified response to small-scale perturba-
tions. Since sequences of kinetic processes are par-
ticularly prone to respond nonlinearly, all currently
known stages of the growth mechanism were in-
cluded in the model. For this reason, the model of
coupled bulk-transport and interfacial kinetics (see
section IV.C) was extended to explicitly include solute
adsorption on interstep terraces, surface diffusion,
and desorption or incorporation into steps. Direct
incorporation from the solution into steps was ig-
nored, since it was shown that it is of negligible
significance to the interstep interactions (see section
II.B.2 above and ref 92).

The geometry of the diffusive bulk transport is the
same as that in section IV.C. The volume-surface
exchange process is governed by the interfacial
boundary condition

where D/Λ ) âad is the kinetic constant for adsorp-
tion of solute from the solution at the interface into
the adsorbed layer, with D being the bulk diffusivity,
Λ is a characteristic length proportional to the
resistance for adsorption, Cs is the surface (adsorp-
tion layer) solute concentration, and τ is the mean
lifetime of an adsorbed molecule on the surface. Note
that in contrast to the earlier model, where only steps
formed sinks for the bulk transport, in the current
model, as expressed by eq 19, all points on the
interface represent potential sinks.

The conservation equation for the solute adsorbed
on interstep terraces is

where the surface diffusivity Ds is assumed to be
independent of the protein surface concentration. As
in eq 19, the second term on the right-hand side of
eq 20 represents the surface-volume exchange flux.

Following refs 136 and 137, it was assumed that
the flux into a step, js, is proportional to the deviation
of the surface concentration Cs at the step from its
equilibrium value Cs

eq. On the ith terrace, bound by

u∞ . vph (16)

u∞λ0/D > 1 (17)

λc
f ) 2.51pj-3/2xδD

u∞
(18)

D ∂C
∂z |intf

) (DΛ)C|intf
-

Cs

τ
(19)

∂Cs

∂t
) Ds

∂
2Cs

∂x2
+ D∂C

∂z |intf
(20)
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the ith and (i + 1)th steps (located at x ) xi and xi +

1, respectively), these fluxes are

Here, âs is the kinetic coefficient for incorporation of
adsorbed molecules into steps and - and + denote,
respectively, the terrace to the left and right of a step
moving in the positive x direction, see Figure 21.

The bulk diffusion equation and eqs 19-21 repre-
sent the assumed pathway taken by the growth units
from the solution into the crystal. It consists of bulk
diffusion, followed by exchange of molecules between
the adsorbed layer and the solution adjacent to the
interface, diffusion of adsorbed molecules toward
steps, and incorporation into steps, which results in
step motion.

In all cases, equal kinetic coefficients were assumed
for incorporation from the left terrace, âs

-, and the
right terrace, âs

+, and express them in the form

Here Λs is a characteristic length proportional to the
resistance for incorporation from the surface into
steps. Note that the restriction of eq 22 can be readily
relaxed and the consequences of asymmetric kinetics
of incorporation into steps141 for step train stability
can be studied without other changes in the model.

The characteristic surface diffusion velocity Ds/λs,
see below, is on the order of 5 µm/s. This is an order
of magnitude higher than the typical step velocity
for lysozyme crystal growth of 0.5 µm/s. Hence, the
neglect, in eq 20, of an advective contribution associ-
ated with step motion is well justified.

Furthermore, as in refs 83, 70, and 200, the steps
were considered to be sufficiently rough, i.e., possess
high kink density, so that diffusion along their edges
can be ignored. Thus, the restriction of the model to
two dimensions, with the steps represented as point
sinks for the adsorbed solute, is also justified.

The surface flux into a step determines the step
velocity according to

where Ω ) 3 × 10-20 cm3 43 is the volume per

lysozyme molecule in the crystal and h ) 1.02 × 10-6

cm is the step height.72-75 Thus, accounting for the
fluxes into a step from the left and right using eqs
21a,b, the velocity of the ith step at xi can be
expressed as

Steps that have a higher velocity will eventually
catch up with slower ones. It was assumed that due
to entropic repulsion between steps,203,204 a pair of
steps cannot form a double step or an overhang.
Somewhat arbitrarily, the repulsive potential was
chosen as a “hard sphere” interaction, with the
characteristic distance between the steps set at five
lattice parameters ()5h). The velocity of the trailing
step in a pair that reached this critical separation is
adjusted such that a closer approach is prevented.

The probability of step generation was evaluated
as in section IV.C, however, using the surface rather
than the bulk supersaturation as a driving force for
the 2D nucleation.

For an equidistant step train at steady state and
assuming that bulk transport is significantly faster
than the interfacial processes, this model is equiva-
lent to the one described in ref 136. Thus, the values
of the kinetics constants for adsorption, desorption,
surface diffusion, and incorporation into steps from
the surface were extracted by correlating the experi-
mentally determined v(σ) to the theoretically derived
dependencies in ref 136.

The “global” computational grid used for the dif-
fusive bulk transport is identical to that used for the
simulations reviewed in section IV.C.2, see Figure 18.
As in that earlier work, the concentration distribution
at the interface was obtained in a mesoscale grid that
covers the narrow interfacial area. The horizontal
grid spacing in the domain is based on a nonuniform
one-dimensional surface grid used for the computa-
tion of Cs. This 1D grid is moved with the steps and
is adjusted according to the changing widths of the
terraces at each time step.

C. Stability with Respect to Small Perturbations

Evaluation of the model described in the previous
subsection yielded excellent agreement with the
results described in section IV.C and ref 205. Thus,
both models reproduce the experimentally observed
amplitudes and time scales of the fluctuations.

To investigate the effects of the magnitude of step
density perturbations on the development of un-
steady behavior, the frequency of generation of new
growth steps at the facet edge was adjusted. In the
case presented in Figure 22a, the resulting density
of the newly generated steps was lower than the
assumed initial density. This resulted in a cascade
of step bunches spreading toward the facet center,
very similar to those resulting from the earlier

Figure 21. Steps in the interface with a one-dimensional
surface diffusion grid and attached vertical grid lines of
the domain. (Reprinted with permission from ref 205.
Copyright 1999.)
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∂x |
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model.185 Then the step nucleation frequency was
increased until the new step density was roughly
equal to the initial one. Figure 22b shows that no
apparent step bunches are created, neither at the
connection point between the old and new parts of
the step train nor due to cascading.206 Note that the
correspondence between the new and the initial slope
is only approximate, i.e., a small perturbation in the
vicinal slope is still present even in the case depicted
in Figure 22b. The lack of step bunches in this case
indicates that whether a step density perturbation
evolves into a step bunch with a continuously in-
creasing slope will depend on the perturbation mag-
nitude. This nonlinear response explains how groups
of fewer dislocations (that produce more regular step
sequences) may produce step trains that undergo
significantly weaker bunching.

For a direct comparison with linear stability theo-
ries, see section IV.A, the preexponential coefficient
in the nucleation rate equation was set to a value
which ensures approximate preservation of the initial
slope/step density on the crystal face even with
decreasing supersaturation at the location of step
generation. If a simulation is run with this value, no
step bunching is observed despite the slight misfit
between the initial and the newly developing slope.
For the intended tests, after 5 min of growth via an
equidistant step train, we imposed a 5% harmonic
perturbation on step density by shifting each step by
x̃i ) 0.05(xi - xi-1) sin(2πxi/x̂), where xi and xi-1 are
the positions of the ith and (i - 1)th steps at 5 min
and x̂ is the perturbation wavelength. We chose three

values of x̂ (50, 100, and 200 µm) that cover the range
of step bunching wavelengths observed in the experi-
ments and simulations.

The results of these runs were output in terms of
series of interfacial profiles and step density traces
at three face locations. Both groups of results showed
no step bunching for simulated growth times as long
as an hour. This is not surprising: if perturbation
with the form of a Heaviside step function, which is
equivalent to a series of harmonic perturbations of
various frequencies and amplitudes, does not cause
step bunching, it is unlikely that a single harmonic
perturbation may do so.

D. Experimental Evidence for the Role of
Perturbation Type and Magnitude

Since small perturbations do not lead to step
bunching and the consequent unsteady behavior
recorded in the crystal growth experiments described
in section III.A, it can be concluded that the observed
kinetics fluctuations are triggered by large perturba-
tions. Sufficiently large perturbations can be provided
by irregular step generation (caused by random 2D
nucleation or interaction between multiple disloca-
tion sources, Figures 1 and 11) or by stoppers
(adsorbed impurities, other dislocation outcrops, etc.)
that lie in the path of a moving step (see section
II.B.1, refs 124 and 205). This conclusion is supported
by numerous observations of differences in fluctua-
tion amplitudes and time scales for crystals with
different growth step sources. For example, Figure
23 presents two fluctuation traces during the growth
of the same crystal. The growth hillock shown in
Figure 23b is steeper and, correspondingly, the
average slope is higher. Note that this is associated
with higher fluctuation amplitudes. The steeper slope
reflects a step source of higher activity, likely due to
cooperation of a larger number of dislocations than
in Figure 23a. One can assume that the interactions
between steps arising from a greater number of
dislocations are more prone to delays, jumps, and
other similar unsteadiness that, in turn, perturb the
step train and cause the more significant fluctuations
recorded for this case.

Further examples of correlations between changes
in the activity of the dislocation growth step source
and variations in unsteady behavior on the same
crystal will be provided in section IX in the context
of suspected effects on the average step kinetics.

These experimental and modeling results suggest
that the step bunching associated with the growth
kinetics fluctuations observed in experiments with
the protein lysozyme are triggered by major step
density variations. Such variations may arise from
the intrinsically irregular nature of step generation
by either two-dimensional nucleation or complex
dislocation sources. Further irregularities in the
step motion, and hence step density, may be intro-
duced by various obstacles that impede the steps’
progress: adsorbed impurity molecules or larger
particles, points defects, dislocations outcrops, and
other surface imperfections.

Figure 22. Interface profiles obtained at the simulation
times indicated on the plots. z-values are in units of step
height h ) 102 Å. Changes in z-values at x ) 0 account for
layers generated between the times noted, i.e., individual
steps remain at their z while propagating to the right. (a)
Selected step generation frequency provides for a new slope
lower than the initial assumption and cascade of step
bunches obtains; (b) steps are generated with a frequency
that ensures approximate preservation of the initial slope,
no step bunches appear. (Reprinted with permission from
ref 206. Copyright 1998 Elsevier Science.)
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VI. Control of Kinetic Unsteadiness
In section IV, we showed that intrinsic kinetics

fluctuations result in optically discernible defects that
can compromise the crystals’ utility for diffraction
structure studies or for other purposes. Fortunately,
based on the dependence of the amplitude of these
fluctuations on the operating point (relative weight

of transport and kinetics in overall rate control),163

one can expect that shifts of the crystallization
conditions toward either pure kinetics or transport
control should result in more steady growth. Depend-
ing on the operating point of the specific system, such
a shift toward more steady intrinsic conditions may
require either enhanced (through forced convection)
or damped (purely diffusive, as under reduced grav-
ity) bulk transport. Note that lysozyme crystallization
from unstirred solutions operates in a mixed regime
with a dominant role of the interfacial kinetics in the
overall rate control.33,87,116,117 Thus, a reduction of the
above step bunching instability should be expected
for further shifts of the operating points to the right
by enhancing the bulk transport. Tests of this ratio-
nale, i.e., the validity of the instability control
parameter Pek, defined in eq 13 in section IV.C, were
carried out through crystallization experiments in
which the convection velocity was quantitatively
varied.

For a given crystallization system, in principle, all
three components of Pek can be varied. However,
inducing variations in âf (e.g., by changing the
concentration of other solution components208) or D
(by the addition of substances that increase viscos-
ity209,210) may also lead to changes in the other two
parameters. This introduces unaccountable varia-
tions in Pek. In flow parallel to the crystal-solution
interface, the coupling between momentum and the
concentration boundary layer results in the rela-
tion211,212

where κ is a dimensionless parameter of ∼5, ν is the
kinematic viscosity of the solution, and x can be
approximated by the crystal’s linear dimension.

A. Experiments with Flowing Solution
Forced solution flow has been employed in protein

crystallization experiments to replenish the solute
consumed by the growing crystals and, thus, to obtain
reproducible correlations between interfacial protein
concentration and growth rates.72,213 Furthermore,
flow has been used to investigate the effects of
solution convection on protein crystal growth.115,214,215

The interest in convection was stimulated by the
finding that with some proteins a reduction of
buoyancy-driven convection in experiments con-
ducted in low gravity resulted in improved crystal
quality.216-218 Hen egg-white lysozyme, particularly
when purified by recrystallization, showed no differ-
ence in crystal growth rate and morphology whether
grown in quiescent or flowing solutions.72,219 In other
studies in which the protein was used as supplied or
after dialysis to remove small molecule components
of the commercial powder, solution flow resulted in
up to 20-fold growth rate reduction115 or even com-
plete growth cessation of tetragonal lysozyme.214,215

Interestingly, the growth rate of rhombohedral
lysozyme was not influenced by flow up to the same
flow rates that caused cessation with the tetragonal
form of the protein.214 It has been suggested that the

Figure 23. Time traces of normal growth rate R, local
slope p, and tangential (step) velocity v obtained at the
marked location (×) of the (110) facet shown in the
interferograms. (a) Steps generated by dislocation bunch
outcropping in lower part of facet. (b) Steps generated by
dislocation bunch outcropping below bottom of interfero-
gram. (Reprinted with permission from ref 163. Copyright
1996 American Physical Society.)

δ ) κ (Dv )1/3(vx
u )1/2

(25)
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growth impediment is the result of shear-induced
conformational changes or even denaturation of the
protein molecules by the flowing solution.115 However,
scaling analysis revealed that the shear forces on the
length scale of a protein molecule, i.e., of O (50 Å),
are several orders of magnitude lower than its
thermal energy.220 More recently it has been sug-
gested that the growth deceleration in flowing solu-
tions is due to incomplete mixing in the regions
between multiple crystals.215 Yet, this model has not
been tested with experiments in which the number
and density of crystallites in the crystallization cell
was varied to change the solute supply conditions.
More importantly, the incomplete mixing model
obviously fails to explain the absence of flow effects
observed for rhombohedral lysozyme.

A novel crystallization and solution circulation
system, consisting of a crystallization cell, peristaltic
pump, and reservoir, was developed for these inves-
tigations. As schematically indicated in Figure 24,
the reservoir is placed at ∼30 cm above the growth
cell. The direction of solution flow is from the
reservoir into the cell and on to the peristaltic pump.
The jitter created by the pump is damped out when
the solution re-enters the reservoir from the top and
the solution is smoothly siphoned from the reservoir
into the cell. The specific placement of the orifice of
the return flow tubing in the reservoir with respect
to the reservoir wall turned out to be crucial for
avoiding protein denaturation. Close contact between
this tubing and the reservoir wall ensured that the
solution slowly slides down the reservoir wall and,
thus, prevented denaturation. This system allows
solution flow through the cell with velocities (mea-
sured at distances of a few crystal dimensions form
the crystal) that can be varied in the range from 20
µm/s, comparable to the buoyancy-driven convection
velocities, up to 2000 µm/s to amplify possible con-
vection effects. Further details on the design and
extensive tests performed with this setup are pro-
vided in ref 221.

B. Suppression of Unsteadiness with Faster Bulk
Transport

In the experiments reviewed here, the flow velocity
u was essentially in the direction of step motion and

varied between 40 and 420 µm/s. Thus, with ν ) 1.32
× 10-2 cm2/s220 and x ) 100 µm, according to eq 25,
δ was varied between 350 µm and 105 µm. With the
lysozyme parameters âf ) 10-6 cm/s87 and D ) 7 ×
10-7 cm2/s,24 the corresponding Pek's range from 0.050
to 0.015. In the absence of forced flow, buoyancy-
driven convection leads to δ ≈ 300 µm,88,115 resulting
in Pek ≈ 0.05. Thus, the above range in flow velocity
should reveal the effects of shifting the system from
its operating point in unstirred solutions to a regime
with significantly faster transport and higher relative
weight of interfacial kinetics in the overall process
control.

Figure 25 shows Fourier spectra normalized with
respect to A0 ) Ravg for several flow velocities
throughout the investigated range. We see that the
fluctuation amplitudes monotonically decrease with
increasing flow velocity. These observations were
interpreted, according to eqs 13 and 25 from sections
IV.C.1 and VI, in terms of decreasing δ with increas-
ing u. The higher transport rates reduce Pek and,
thus, stabilize the growth kinetics.

Trends identical to those represented by Figure 25
were recorded with numerous crystals223,224 at super-
saturations σ ranging from 0.58 to 1.8, using solu-
tions of different purity. This confirms transport
enhancement as a means of shifting the operating
point of the system from the mixed regime toward
kinetics control, thereby suppressing the fluctuation
amplitudes and increasing the stability of the growth
process against rate/flux perturbations. Note also
that these effects are different from the previously
observed reduction of step bunching by forced solu-
tion flow195 that was analyzed in terms of linear
stability.196,198 For the latter, stabilization occurred
only with flows opposite to the step motion direction.
However, the results for the lysozyme system, re-
viewed here and in other related papers,223,224 do not
depend on the relative directions of step motion and
solution flow, including essentially parallel motion
of steps and solution. Further indication of the
inapplicability of these linear stability analyses to the
observations in refs 163 and 169 was discussed in
section V.A in relation to the observation that step

Figure 24. Schematic of solution circulation loop. Arrows
indicate directions of solution flow. (Reprinted with per-
mission from ref 221. Copyright 1998 Elsevier Science.)

Figure 25. Normalized Fourier spectra A(f)/A0 (f ) Fourier
frequency) of growth rate traces as a function of flow rate
u during growth of a (101) face of a lysozyme crystal at σ
) 1.0 (T ) 25 °C) solution. (Reprinted with permission from
ref 223. Copyright 1998 American Physical Society.)
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bunch wavelengths lie within the predicted region of
stability for equidistant step trains (see section V.A).

VII. Impurities and Kinetic Unsteadiness
Impurities with a molecular size larger than that

of the basic protein or 3D nuclei,78,79,225,226 due to their
lower diffusivity, are more depleted in the interfacial
region than the host protein itself.227,228 Thus, in the
absence of convective transport, the incorporation of
potentially defect-inducing large impurities, aggre-
gates, and nuclei into a crystal may be significantly
reduced. To test how convective transport influences
the impurity-induced kinetics effects, we compare in
Figure 26 the flow rate dependencies of the Fourier
spectra, characteristic of the unsteady kinetics. These
dependencies were recorded during the growth from
ultrapure lysozyme solutions56 and solutions inten-
tionally contaminated with 1% lysozyme dimer,
produced and isolated as described in ref 229. Such
impurity levels are commensurate with those typical
in protein crystallization solutions. All kinetics data
were obtained during the growth of one crystal, and
the interferometric images revealed that the growth
layer source was located at the lower facet corner
throughout the measurements. For further details,
see ref 224.

We see in Figure 26a that after the initial decrease
in fluctuation amplitudes up to flow rates of ∼500
µm/s, the amplitudes again increase and reach values
even higher than in unstirred solutions. During
growth from the less pure solution, Figure 26b, the
fluctuation amplitude starts increasing at about one-
half the flow rate at which this increase is observed

in the pure solutions. Figure 27 shows the depend-
encies of the averaged growth rate and step velocity
on the flow rate for the pure and contaminated
solutions, corresponding to the growth regimes char-
acterized by the Fourier spectra in Figure 26. In the
intentionally contaminated solution, Ravg and vavg
decrease with increasing u even at the lowest flow
rates. Growth ceases at u ≈ 1000 µm/s, while in the
pure solution, growth initially accelerates with in-
creasing flow rate, reaches a maximum Ravg at u ≈
450 µm/s, and retains significant, albeit reduced
magnitudes at all flow rates studied. When similar
tests are carried out at lower supersaturation, e.g.,
σ ) 1.0, growth cessation is reached at u ≈ 1500 µm/s
even in the high-purity solution. This is related to
the longer exposure times of the interstep terraces
to impurity adsorption at the lower R’s typical for
such values of σ.71,87

The amplification of the decrease in magnitude of
R and v at higher u- velocities and higher lysozyme
dimer concentrations indicates that this is due to
flow-enhanced transport of the growth-inhibiting
impurity to the interface. This mechanism requires
that the impurity amount per unit volume in the
crystal is higher than that in the solution and that
its diffusivity is sufficiently low such that the impu-
rity concentration at the interface is lower than that
in the bulk solution. Only then can enhanced, con-
vective transport increase the interfacial impurity
concentration.

To test for the impurity repartitioning, lysozyme
crystals were grown from solutions prepared from
Seikagaku lysozyme, which contains about 1% of
other protein impurities.56 The solution was divided
into samples of 0.5 mL in sealed tubes. Pairs of tubes
were kept for 15 days at 20 °C, i.e., at a temperature
representative of the growth kinetics studies. A
control tube the was kept at room temperature, 25-
27 °C, and no crystals formed in it. For analysis, the
supernatant was separated from the crystals by
careful decanting into an empty tube and the crystals
were twice rinsed with water chilled to 0 °C.148 Then
the crystals were dissolved in 0.5 mL of acetate
buffer, and the protein concentration of the super-
natant and dissolved crystals was determined by

Figure 26. Normalized Fourier spectra A(f)/A0 (f ) Fourier
frequency) of growth rate traces obtained at σ ) 1.4 (T )
22 °C) as a function of flow rate u during growth from
solutions before (a) and after (b) the addition of ∼1%
lysozyme dimer to 99.99% pure lysozyme. (Reprinted with
permission from ref 224. Copyright 1997 American Chemi-
cal Society.)

Figure 27. Flow rate dependence of the average growth
rate Ravg and step velocity vavg at two solution purity levels
at σ ) 1.4 (T ) 22 °C), corresponding to the traces whose
Fourier spectra are displayed in Figure 26. (Reprinted with
permission from ref 224. Copyright 1998 American Chemi-
cal Society.)
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SDS-PAGE.56 Since each gel lane was loaded with
the same solution volume, differences of impurity
band intensities are representative of the differences
of the impurity amounts per lysozyme molecule in
the samples.

The gels are shown in Figure 28. It is seen that
the dimer with MW ∼29 000 is indeed incorporated
into the crystals. Taking into account the change of
monomer density upon crystallization, ∼16 times, the
gels show that the amount of dimer per unit volume
in the crystals is about 5 times higher than in the
solution. In addition, it is safe to assume that the
larger dimer has a lower diffusivity in the solution
than the monomer.

These observations strongly support the proposed
mechanism for convective flow increase of the am-
plitude of defect-causing fluctuations due to enhanced
impurity to the interface. Although the flow velocities
at which these effects were observed were signifi-
cantly higher than buoyancy-driven convection ve-
locities, note that the purity of the material used is
also significantly higher than normally employed in
protein crystallization practice. Thus, it is conceivable
that with solution purity on the order of 95-99%,
such impurity-induced instabilities and striations
may occur at the flow velocities typical of buoyancy-
driven convection.

VIII. Rationale for System-Dependent Effects of
Bulk-Transport Changes on Crystal Perfection

On the basis of the above findings, we can speculate
how changes in the transport conditions may affect
the quality of the protein crystals or other systems
with mixed transport-kinetics control. If, for in-
stance, for the growth of a certain (protein) material
on Earth bulk-transport and interfacial kinetics have
comparable weights in the overall rate control,
fluctuation amplitudes may be significant. In this
case, a shift of the operating point toward higher
kinetics control due to slower transport in the ab-
sence of buoyancy-driven convection under low-grav-

ity conditions can dampen the fluctuations. This can
result in higher crystal perfection. On the other hand,
crystallization systems with slower surface kinetics
and faster transport would operate under stronger
transport control. Then on suppression of convective
transport in space, fluctuation amplitudes may in-
crease and the crystal quality decrease. Furthermore,
in some case the reduced supply of impurities to the
growth interface in space may also contribute to
higher crystal perfection. Similar considerations may
help us rationalize why only about 20% of the
proteins and viruses that were crystallized under
reduced gravity yielded higher X-ray diffraction
resolution than their controls grown on Earth.230 The
remainder either showed no improvement or dif-
fracted to lower resolution either due to smaller sizes
or, as documented for a few cases, lower crystal
perfection.231,232

A. Pure Solutions
It is useful to test the above rationale by analyzing

its predictions for the results of actual protein crystal
growth experiments carried out in microgravity. Note
that the discussion in this subsection only concerns
pure protein solutions. Implications for protein crys-
tal quality from the changes in supply rates of
impurities to the interface will be reviewed in the
next subsection. Some general recommendations for
pure and impure protein solutions will be provided
at the end of the section.

In section IV.A, we characterized the relative
importance of transport and interface processes by
the kinetic Peclet number. This Pek was evaluated
for four proteins that were crystallized both on Earth
and under reduced gravity and for which the kinetic
coefficients, see section II.B.1, as well as the diffu-
sivities are known,24,26,233 see Table 1.

234

For lysozyme and thaumatin, Pek values reflect
kinetics-dominated growth. For lysozyme, this is
expected from earlier studies.33,88,116,117,123 Hence, from
the point of view of nonlinear response, an increase
of bulk-transport contributions to growth rate control
under reduced gravity should not result in increased
structural perfection, i.e., little or no improvements
from microgravity growth should be expected. This
corresponds to the results for space-grown lysozyme.232

Exceptions to this that were observed in earlier tests
with lysozyme235 and thaumatin236 may be due to
reduced impurity supply in the absence of convection
in space, see below and refs 223 and 237, and/or the
lack of sedimentation.230

For canavalin and STMV, the Pek’s indicate that
these systems operate on Earth more in the mixed-
control regime. Furthermore, space-grown canavalin

Figure 28. Analysis of impurity repartitioning upon
crystallization by electrophoresis. (a) SDS PAGE 12.5%
homogeneous Pharmacia PhastGel with silver staining.
The solution was concentrated or diluted to bring the
protein concentration to 10 mg/mL in each sample, with
0.3 µL loaded in each lane: lane 1, standards; lane 2, initial
solution control; lane 3, supernatant after separation from
the crystals; lane 4, dissolved crystals. (b) Optical density
scans of lanes 3 and 4 in part a. (Reprinted with permission
from ref 206. Copyright 1998 Elsevier Science.)

Table 1. Estimated Kinetic Peclet Numbers of
Lysozyme, Thaumatin, Canavalin, and Satellite
Tobacco Mosaic Virus (STMV) Using a Characteristic
Diffusion Length δ ) 300 µm.199 For Sources of Data,
See Text

lysozyme thaumatin canavalin STMV

D [10-6 cm2/s] 0.73 0.6 0.4 0.2
âf ) âstepp [cm/s] 1 × 10-6 2 × 10-6 5 × 10-6 8 × 10-6

Pek ) âfδ/D 0.05 0.1 0.38 1.2
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and satellite tobacco mosaic virus (STMV) crystals
yielded higher diffraction resolution.227,228 This sug-
gests that the higher perfection of space-grown
crystals of these materials could be due to a reduction
in nonlinear response, i.e., a shift of the working point
toward transport control resulting from the diffusive
transport at low gravity.

Besides the possible damping of growth rate fluc-
tuations, there are other benefits from the reduced-
gravity conditions. For example, sedimentation of
foreign particles or microcrystals on a growing facet
is dramatically reduced.230 However, the argument
outlined above provides a system-dependent rationale
for advantages as well as disadvantages of reduced-
gravity growth conditions for (protein) crystal perfec-
tion.

B. Impure Proteins
The effects of enhanced impurity transport on step

bunching, discussed in section VII, may underlie
observed improvements in the quality of lysozyme235

and thaumatin236 crystals grown in microgravity. In
both studies, the crystals were grown from material
as received from Sigma, without any further purifica-
tion. Lysozyme batches from Sigma have been shown
to contain as much as 5% of larger proteins,56 while
the thaumatin material, according to the manufac-
turer, is a mixture of mainly two protein species with
traces of other sweet proteins.

Thus, if impurities are responsible for crystal
quality degradation, a microgravity environment, by
minimizing such flows, can result in substantial
improvements. This conclusion is supported by recent
results on lysozyme crystals grown in the absence of
buoyancy-driven convection in microgravity from a
low-purity solution, which showed lower impurity
incorporation and higher diffraction resolution than
identically grown Earth controls.237

These results are also relevant to the growth
cessation at a “terminal crystal size” often observed
by practitioners. At larger crystal sizes, the velocities
of buoyancy-driven flows are higher.174 This enhances
the impurity supply to the interface, which, in turn,
causes “surface poisoning” and growth cessation.
Furthermore, this mechanism may also be respon-
sible for the larger crystal sizes obtained in some
microgravity growth runs.10,218,236 So far, such obser-
vations have resisted explanation since decelerated
solute transport in space should cause reduced
interfacial supersaturation, slower growth, and, hence,
for the limited duration of a space flight smaller
crystals.

C. What Should We Do before Conducting
Low-Gravity Experiments?

From the rationales for pure and impure solutions
reviewed in the above two subsections, a few steps
can be taken to optimize the yield of the expensive
protein crystal growth experiments in space. First,
one would recommend state-of-the-art characteriza-
tion and purification of the protein material by using
conditions (pH, ionic strength, type and concentration
of accompanying salt and other additives) that have

been specifically found to produce the highest sepa-
rations from the impurities typical for the material
of interest. If this approach is carried out consis-
tently, so-called microgravity filtering of impurities
by decelerating their access to the interface may be
unnecessary. When this approach was recently ap-
plied to the pair ferritin/apoferritin, it yielded ∼1 Å
improvement in diffraction resolution even in Earth-
grown crystals.84 Of course, for some extremely scarce
proteins, there is insufficient material to develop and
optimize comprehensive purification procedure. Other
proteins may not be readily purified using currently
available techniques. In these cases, it may be worth
purifying the interfacial solution layer under micro-
gravity conditions to achieve lower impurity supply
and, hence, higher crystal perfection.

Second, even if high-purity protocols exist for a
protein of interest, microgravity benefits can be
expected if the kinetic Peclet number indicates mixed
or transport-controlled growth regimes on Earth. For
such materials, the effective reduction of the trans-
port rates in the absence of buoyancy-driven convec-
tion will eliminate kinetics fluctuations and lead to
higher crystal perfection. To be able to unambigu-
ously predict benefits from the growth of crystals
under reduced gravity, the transport and kinetic
properties of the crystallizing system would have to
be studied. Such investigations may take several
months, but they will definitely occupy less time and
resources than a space-flight experiment that does
not yield crystals of better quality than what can be
achieved under terrestrial conditions.

IX. Does Step Bunching Contribute to the Slow
Protein Crystal Growth?

Some of the growth runs with lysozyme that were
monitored using interferometry yielded growth rate
R and step velocity v values significantly higher than
in any previous measurements regardless of the
material purity. In some cases, these values were also
higher than those obtained at earlier stages of growth
of the same crystal, during which the crystal was
smaller and the growth layers were generated by
other dislocation step sources. An example of such
kinetics results is given in Figure 29 together with
typical lower Ravg and vavg values obtained on the
smaller crystal. Corresponding growth morphologies
are shown in Figure 30a,b.

The vavg(σ) dependence in Figure 29b is well
reproduced by the relation

where Ω is the molecular volume in the crystal, with
the step kinetic coefficient âst) 2 × 10-3 cm/s and
step field overlap parameter k ) 500. This is shown
by the curve calculated from eq 26 with these
parameters and the pavg(σ) dependence recorded in
parallel with Ravg and vavg. The value of k agrees well
with previous determinations for the same system
(see discussion in section II.B.2). However, the value
of âst is about 10-50 times higher than previously
determined, see section II.B.1.

vavg )
âΩCeq(C/Ceq - 1)

1 + kpavg
(26)
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To rationalize this high âst value at the larger
crystal size (compare parts a and b in Figure 30),
recall that as a crystal grows, the dislocation source
activity drops, see section II.A.3. This decrease was
related to diverging lines of bunched dislocations,
leading to fewer dislocations within a distance Fc
corresponding to the radius of a critical 2D nucleus
where they act as a joint growth layer source.
Furthermore, as discussed in connection with the
numerical simulations of step bunching in sections
IV.C and V and in refs 185 and 205, unsteadiness in
step source activity acts as a trigger for the bunching
that underlies the growth rate fluctuations. As the
number of dislocations in a growth layer source
decreases with crystal size, it is reasonable to expect
that the layer generation becomes more regular and
the step density perturbations weaken. This results
in reduced step bunching in the generated step train.
It appears that such a step train spreads with higher
vavg than a step train with higher step bunches.

This hypothesis is supported by Figure 30c,d,
which presents the fluctuation patterns correspond-
ing to the pair of R and v measurements at u ) 105
µm/s and σ ) 1.0, marked by arrows in Figure 29.
We see that a faster growth rate and step velocity
are associated with lower step bunching and growth
rate fluctuations. An analogy can be found between
certain traffic flow situations and the correlation
between the higher average step velocity and more
uniform step spacing. Consider a certain section of
the road where the distance between cars is constant.

The residence time of each car in this section will be
shorter than the residence time in an equivalent
length section where there are traffic jams even if
the overall number of cars in this section, i.e., the
average car density, is the same. A more rigorous
theoretical discussion of the relation between this of
type step bunching and averaged step velocity will
be presented elsewhere.238

Numerous additional experiments with lysozyme
revealed similar correlations between the fluctuation
amplitudes and vavg. The highest value of the kinetic
coefficient, found in these studies by substituting the
average values for p and v into eq 26, was 4.1 × 10-3

cm/s. Such high âst values are comparable to the step
kinetic coefficient for some inorganic crystal growth
systems239-241 and exceed all published kinetic coef-
ficients for proteins, section II.B.1, by 1-2 orders of
magnitude. This suggests that some interpretations
of the small values of the protein kinetic coef-
ficients106 may need to be revisited.

Besides the effects of step bunching on average
growth rate in pure systems, step bunching may
result in enhanced impurity effects. Thus far, impu-
rity effects on growth have only been discussed in
terms of the retardation of individual steps in equi-
distant step trains.120-122,125,126 However, impurities
are also known to cause step bunching.242,243 Hence,
in view of the above scenario, growth deceleration due
to impurities can be strongly amplified by the inter-
action of steps in trains that have become nonuniform
due to impurity action. Such a synergistic mechanism
may underlie, for instance, the unusual dependence

Figure 29. Supersaturation dependence of the normal
growth rate R (a) and step velocity V (b) averaged over
periods on the order of 1 h. Growth from solution containing
1% lysozyme dimer: (9, 2) u ) 105 µm/s; (0, 4) u ) 305
µm/s; (9, 0) series of measurements at the end of run,
representative growth morphology is shown in Figure 30b;
(2, 4) measurements at earlier stages of growth of the same
crystal, representative growth morphology is shown in
Figure 30a. Curve in part b presents data fit to 9 according
to eq 26, for parameters see text. Arrows indicate conditions
for which the fluctuation characteristics are displayed in
Figure 30c,d. (Reprinted with permission from ref 224.
Copyright 1998 American Chemical Society.)

Figure 30. (a,b) Representative morphologies of the facet
during the recording of the kinetic data presented in Figure
5: (+) location of layer generation; (×) location of growth
kinetics monitoring. (c,d) Traces of normal growth rate R,
vicinal slope p, and Fourier spectra of R corresponding to
the points marked by arrows in Figure 29 at σ ) 1.0 (T )
25 °C) and u ) 105 µm/s. Small crystal size in part a
corresponds to stronger fluctuations in part c and lower
step velocity and growth rate in Figure 29. (Reprinted with
permission from ref 224. Copyright 1998 American Chemi-
cal Society.)
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of the “dead-zone” width on the bulk concentration
of impurities observed in a recent study of KDP
crystal growth.244 This strong dependence exceeds,
by far, the predictions even of most comprehensive
models of impurity action based on trains of equidis-
tant steps.120-122

Another consequence of the correlation between
growth step bunching and growth rate is that it
provides a novel mechanism for temperature effects
on the growth rate. If the step patterns depend on
temperature, this dependence should be accounted
for in determinations of the activation barriers of the
constituent steps of the crystal growth mechanisms.
Furthermore, since bunching also depends on the
growth layer source, which varies from crystal to
crystal, weaker or stronger temperature dependen-
cies of the growth rate are possible for different
crystals. Experimental evidence in support of this
temperature dependence can be found in refs 128 and
129 in which interferometry was used to characterize
surface features and determine vavg and â. The
effective activation energy for growth step propaga-
tion was found to be higher by about 20 kJ/mol at
lower temperatures. This value was attributed to the
additional growth step acceleration due to weaker
bunching with increasing temperature.

X. Concluding Remarks
Besides the significance for the quality of the

protein crystals, the unsteady dynamics of layer
growth discussed above may have numerous other
implications. It is a fascinating model for unsteady
processes that occur not only during phase transi-
tions in crystal growth or other areas of materials
science,245 but also in many branches of physics, in
various biological systems,246 that may have long-
ranging medical consequences.247

Questions that need to be addressed in all such
studies concern the character of the unsteady behav-
ior. Is it a deviation from the normal steady behavior
of the system or is unsteadiness the norm and steady-
state nonexistent?

Specific questions related to protein crystallization
involve the particular character of the unsteady
phenomena during growth of other protein crystals
and under a broader variety of conditions: forced
flow, full suppression of convection under micrograv-
ity, etc.
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